A novel hybrid meta-heuristic technique applied to the well-known benchmark optimization problems
Authors
Abstract:
In this paper, a hybrid meta-heuristic algorithm, based on imperialistic competition algorithm (ICA), harmony search (HS), and simulated annealing (SA) is presented. The body of the proposed hybrid algorithm is based on ICA. The proposed hybrid algorithm inherits the advantages of the process of harmony creation in HS algorithm to improve the exploitation phase of the ICA algorithm. In addition, the proposed hybrid algorithm uses SA to make a balance between exploration and exploitation phases. The proposed hybrid algorithm is compared with several meta-heuristic methods, including genetic algorithm (GA), HS, and ICA on several well-known benchmark instances. The comprehensive experiments and statistical analysis on standard benchmark functions certify the superiority of the proposed method over the other algorithms. The efficacy of the proposed hybrid algorithm is promising and can be used in several real-life engineering and management problems.
similar resources
A NOVEL META-HEURISTIC ALGORITHM: TUG OF WAR OPTIMIZATION
This paper presents a novel population-based meta-heuristic algorithm inspired by the game of tug of war. Utilizing a sport metaphor the algorithm, denoted as Tug of War Optimization (TWO), considers each candidate solution as a team participating in a series of rope pulling competitions. The teams exert pulling forces on each other...
full textHybrid Heuristic Optimization for Benchmark Datasets
This paper introduces hybridization of particle swarm optimization (PSO) with genetic algorithm (GA) denoted as PSO+GA provides an efficient approach which is used to solve non linear chaotic datasets. The proposed algorithm employed in probabilistic neural network(PNN) which is a variant of radial basic function artificial neural network (RBFANN) for finding precise value spread factor for acc...
full textIntroducing a new meta-heuristic algorithm based on See-See Partridge Chicks Optimization to solve dynamic optimization problems
The SSPCO (See-See Particle Chicks Optimization) is a type of swarm intelligence algorithm derived from the behavior of See-See Partridge. Although efficiency of this algorithm has been proven for solving static optimization problems, it has not yet been tested to solve dynamic optimization problems. Due to the nature of NP-Hard dynamic problems, this algorithm alone is not able to solve such o...
full textA Novel Optimization Approach Applied to Multi-Pass Turning Process
Optimization of turning process is a non-linear optimization with constrains and it is difficult for the conventional optimization algorithms to solve this problem. The purpose of present study is to demonstrate the potential of Imperialist Competitive Algorithm (ICA) for optimization of multipass turning process. This algorithm is inspired by competition mechanism among imperialists and coloni...
full textA Novel Optimization Approach Applied to Multi-Pass Turning Process
Optimization of turning process is a non-linear optimization with constrains and it is difficult for the conventional optimization algorithms to solve this problem. The purpose of present study is to demonstrate the potential of Imperialist Competitive Algorithm (ICA) for optimization of multipass turning process. This algorithm is inspired by competition mechanism among imperialists and coloni...
full textA Hybrid Meta-heuristic Approach to Cope with State Space Explosion in Model Checking Technique for Deadlock Freeness
Model checking is an automatic technique for software verification through which all reachable states are generated from an initial state to finding errors and desirable patterns. In the model checking approach, the behavior and structure of system should be modeled. Graph transformation system is a graphical formal modeling language to specify and model the system. However, modeling of large s...
full textMy Resources
Journal title
volume 13 issue 1
pages -
publication date 2017-03-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023